
J Glob Optim (2006) 36:597–608
DOI 10.1007/s10898-006-9029-9

O R I G I NA L A RT I C L E

Additive scaling and the DIRECT algorithm

D. E. Finkel · C. T. Kelley

Received: 20 March 2006 / Accepted: 21 March 2006 /
Published online: 27 June 2006
© Springer Science+Business Media B.V. 2006

Abstract In this paper we show that the convergence behavior of the DIviding
RECTangles (DIRECT) algorithm is sensitive to additive scaling of the objective
function. We illustrate this problem with a computation and show how the algorithm
can be modified to eliminate this sensitivity.

Keywords DIRECT · Global optimization · Additive scaling

1 Introduction

DIviding RECTangles (DIRECT) [16] is an optimization algorithm designed to search
for global minima of a real valued objective function over a bound-constrained do-
main. The algorithm does not use derivative information in its search; instead, it relies
on the iteration history to determine future sample locations.

The strength of DIRECT is the balanced global and local search it performs.
This article describes conditions under, which the balance of the algorithm becomes
skewed. We observe that DIRECT is sensitive to additive scaling, and this sensitivity
may lead to slow asymptotic convergence. Examples, which illustrate this effect can
be generated easily, as we do in Sect. 3.2, by adding a large positive constant to a
function that DIRECT would otherwise optimize very well. We suggest a modifica-
tion to the algorithm, and present test results that illustrate the effectiveness of our
modification.

D. E. Finkel
Advanced Concepts and Technologies, MIT Lincoln Laboratory, 244 Wood St, Lexington,
MA 02420-9108, USA
e-mail: dfinkel@ll.mit.edu

C. T. Kelley (B)
Center for Research in Scientific Computation and Department of Mathematics, North Carolina
State University, Box 8205, Raleigh, NC 27695-8205, USA
e-mail: tim_Kelley@ncsu.edu

598 J Glob Optim (2006) 36:597–608

For this paper, we are concerned with a bound constrained optimization problem:

(P) min
x∈�

f (x), where f: R
n → R (1)

with � = {x ∈ R
n : li ≤ xi ≤ ui, i = 1 . . . n} , and l, u ∈ R

n given. We assume that f
is Lipschitz continuous on �. In many applications, f is nonsmooth, or no derivative
information is available. For example, an evaluation of f may require several different
simulations to be performed [4, 17]. The simulators can have nonsmooth functions
built into them (e.g. IF statements, max functions and table lookups), or may add
noise to the problem via truncation error. Finite differences may fail to accurately
approximate the gradient of f . Sampling methods, such as DIRECT, can solve such
problems when gradient-based methods fail.

The DIRECT algorithm can be effective [2, 3, 9, 16, 18, 20] in finding the basin of
convergence for a global solution on low-dimensional problems. Unlike other deter-
ministic sampling methods [1, 5, 12, 14, 15, 19], DIRECT does not use a pattern or
stencil in its search, nor does it approximate gradient information, even indirectly.

The algorithm operates by systematically dividing the box domain, �, into hy-
perrectangles, and evaluating the objective function in their centers. There are two
phases to an iteration of DIRECT; first, hyperrectangles are identified as potentially
optimal, i.e., they have potential to contain a global solution. The second phase of
an iteration is to divide potentially optimal hyperrectangles into smaller hyperrec-
tangles. The objective function is evaluated in the centers of new hyperrectangles. A
parameter is used to protect the iteration against excessive local bias in the search.
In this paper we show that one effect of the use of this parameter is a degradation in
the performance of the algorithm if the function to be minimized is poorly scaled in
the additive sense, i.e., the maximum and minimum values are both large relative to
the size of the bounding hypercube.

The DIRECT algorithm performs a global search in that the algorithm continues to
search for global solutions after local minima have been detected. When given no ter-
mination criteria, DIRECT will exhaustively sample the domain [16], an observation
that has been used to describe theoretical nonsmooth convergence of the algorithm [7].
In practice, DIRECT typically clusters sample points around local and global optima
after a few iterations [2, 18, 20].DIRECT can be implemented so that many evaluations
of the objective function are done simultaneously on a parallel machine [11].

In the next section, we describe DIRECT. In Sect. 3, we examine some vulnerabil-
ities of the algorithm. Section 4 is a description of our modification to DIRECT. We
close with test results.

2 Direct

The DIRECT algorithm begins by scaling the domain, �, to the unit hypercube with
the linear transformation T :Rn → R

n

T (x) = X(u − l) + l for all x ∈ �,

where X is a n × n matrix with elements of x along its diagonal, and zeros elsewhere.
This mapping does not change the optimization process, and simplifies analysis of

the algorithm. Therefore, we assume for the rest of this paper that

� = {
x ∈ R

n : 0 ≤ xi ≤ 1, i = 1 . . . n
}

.

J Glob Optim (2006) 36:597–608 599

2.1 The first iteration

The DIRECT algorithm begins by evaluating f at the center of �, c = (1/2, . . . , 1/2) .
Determining potentially optimal hyperrectangles in the first iteration is trivial; � itself
is the first potentially optimal hyperrectangle. The DIRECT moves to the next phase
of the iteration, and divides the potentially optimal hyperrectangle.

The DIRECT algorithm begins the division process by evaluating f at neighbors of
c in every dimension. The neighbors are determined to be the points two thirds of the
way between c and the boundary. Thus, f is evaluated at

c ± 1
3

ei for all i ∈ [1, n],

where ei is the ith unit vector. The 2n points sampled become centers of their own
hyperrectangles, and the algorithm continues to the next iteration. Figure 1 shows this
process on a two-dimensional example. We provide more details on this procedure in
the next section.

2.2 General iterations of DIRECT

After the first iteration, the algorithm selects potentially optimal hyperrectangles
sparingly. Rules for division are also developed so that all dimensions are sampled
equally.

The definition of a potentially optimal hyperrectangle is given below, and is origi-
nally from [16].

Definition 1 Let S be the set of hyperrectangles created by DIRECT after k iterations,
and let fmin be the best value of the objective function found so far. A hyperrectangle
R ∈ S with center cR and size α(R) is said to be potentially optimal if there exists K̂
such that

f (cR) − K̂α(R) ≤ f (cT) − K̂α(T) for all T ∈ S, (2)

f (cR) − K̂α(R) ≤ fmin − ε|fmin|. (3)

In [16], hyperrectangle size is measured by the distance from its center to a vertex.
In [10], the authors modified DIRECT and measure hyperrectangles by their longest
side. In practice, this modification biases the algorithm toward local solutions [10].

Figure 2 is a geometric interpretation of Definition 1. Each point on the graph rep-
resents a hyperrectangle in S, with an additional square dot added at (0, fmin −ε|fmin|).
Equations 2 and 3 define the set of hyperrectangles that correspond to the lower

c c c c

Fig. 1 The first iteration of DIRECT

600 J Glob Optim (2006) 36:597–608

f(c)

size

(0,fmin - |fmin|)

Fig. 2 Geometric interpretation of (2) and (3)

convex hull of the cloud of points. These hyperrectangles are subdivided in the next
phase of the iteration.

The purpose of the parameter ε is to guard the DIRECT iteration against excessive
emphasis on local search [16]. In Fig. 2, the square dot alters the lower convex hull,
and the small hyperrectangle, which contains the low function value is not potentially
optimal. This paper is concerned with this parameter, and it is role in the convergence
of DIRECT.

Potentially optimal hyperrectangles are subdivided along their long coordinate
directions. This strategy ensures equal sampling in every dimension, and is outlined
in Table 1 [16].

The DIRECT typically terminates when a user-supplied budget of function eval-
uations is exhausted. Alternative stopping criteria have been used [9]. In [13], an
implementation of DIRECT is introduced that relaxes the definition of potentially
optimal hyperrectangles. This modification was designed for large parallel computers.

3 The parameter ε

In this section, we carefully examine the role of the parameter ε. We show that ε can
affect the convergence of DIRECT with examples and analysis.

Table 1 Division of a
hyperrectangle R with center c

1 Let R be a potentially optimal hyperrectangle with center c.
2 Let ξ be the maximal side length of R.
3 Let I be the set of coordinate directions corresponding to sides

of R with length ξ .
4 Evaluate the objective function at the points c ± 1

3 ξei,
for all i ∈ I, where ei is the ith unit vector

5 Let wi = min
{

f (c ± 1
3 ξei)

}

6 Divide the hyperrectangle containing c into thirds along the
dimensions in I, starting with the dimension with lowest wi
and continuing to the dimension with the highest wi

J Glob Optim (2006) 36:597–608 601

3.1 The role of ε

In [16], the parameter ε was introduced as a way to guard against excessive local
search.

Different values for ε were examined in [16] on a set of popular global optimization
test problems [6, 21]. On most problems, convergence was not affected by ε. In a few
cases, the performance of DIRECT improved for large values of the parameter. The
recommended value of ε = 10−4 was chosen because it produced the most robust
results for DIRECT. In [8], this recommendation was revised to include a lower bound
for the right-hand-side of (3).

In Fig. 3, we see the benefits of the parameter when DIRECT tries to find the global
minima of the Shubert test function [16, 21]. When ε is set to zero, DIRECT fails to
find the solution in a reasonable amount of function evaluations.

3.2 Additive scaling and its interaction with the parameter ε

The rest of this paper is concerned with the consequences of using the parameter ε.
We begin with two examples that illustrate DIRECT’s sensitivity to ε.

The first example shows that DIRECT is affected by additive scaling. For this exam-
ple, we added 106 to the Branin function [6]. In [16], 195 function evaluations were
needed by DIRECT. For this experiment, a budget of 500 function evaluations is used.

Figure 4 compares DIRECT with and without the parameter ε. The figures indicate
that ε is affecting the ability of DIRECT to find a global solution. In Fig. 4, sample
points cluster around the three global optima when ε = 0. When the parameter is set
to the recommended value of 10−4 from [16], the sample points do not cluster. Note
that if ε = 10−4, the distance between the best point found by DIRECT and the true
optimum is 0.34; when ε = 0, that distance is 1.12e-5.

0 2000 4000 6000 8000 10000 12000 14000 16000
–200

–180

–160

–140

–120

–100

–80

–60

–40

–20

0

Fcn Evaluations

fmin
ε = 0

ε = 10–4

Fig. 3 Results for different values of ε on the Shubert test problem

602 J Glob Optim (2006) 36:597–608

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 1

x2

Fig. 4 Results for different values of ε on the perturbed Branin test problem. The picture on the left
shows the sampled points when ε = 10−4. The right figure is the points DIRECT samples when ε = 0

As a second example, consider the simple problem

min
�

4∑

i=1

|xi| + 1, (4)

where � = {
x ∈ R

4 : −2 ≤ xi ≤ 3
}
. We will see that the standard value ε = 10−4

can slow the asymptotic convergence of DIRECT. Figure 5 describes the results when
DIRECT is given an exorbitant budget of 100,000 function evaluations. When ε = 0,
the relative error drops to machine precision, compared to a much larger relative
error when ε = 10−4. Keep in mind that simply setting ε = 0 is not a solution to this
problem. While there is no sensitivity to additive scaling when ε = 0, the problem of
excessive local search will resurface.

The behavior of DIRECT in these examples is explained by observing the smallest
hyperrectangles. The smallest hyperrectangle after k iterations of DIRECT is always
a hypercube, and is a candidate to be potentially optimal whenever the value at the
center is fmin (see, Fig. 2). This candidate is rejected for subdivision if it does not satisfy
(3), the condition controlled by the parameter ε. Rejecting the smallest hypercube for
subdivision can produce poor convergence, as seen in Figs. 4 and 5. In Theorems 3.1
and 3.2, we describe how rejecting the small hypercube leads to poor performance by
DIRECT.

Theorem 3.1 shows how poor additive scaling can cause the algorithm to perform
poorly as the size of the hypercube which contains the optimal point becomes small.
Theorem 3.2, which was suggested by a clever referee of this paper, uses similar
reasoning to show that if the additive scaling is particularly bad, that a hypercube,
which contains the current minimal point will not become potentially optimal until all
larger hyperrectangles are divided, i.e. DIRECT becomes an exhaustive grid search.

Theorem 3.1 Let f:Rn → R be a Lipschitz continuous function with Lipschitz constant
K, Let S be the set of hyperrectangles created by DIRECT, and let R be a hypercube
with a center c and side length 3−l. Suppose that

(i) α(R) ≤ α(T), for all T ∈ S (i.e. R is in the set of smallest hypercubes).
(ii) f (c) = fmin �= 0 (i.e. f (c) is the low value found).

J Glob Optim (2006) 36:597–608 603

101 102 103 104 105

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

102

Fcn Evaluations

|f m
in
–

 f*
|

ε = 10–4

ε = 0

Fig. 5 Slow asymptotic convergence on the convex test problem f (x) = ‖x‖1 + 1

If

α(R) <
ε|f (c)|

2K

(√
n + 8 − √

n
)

(5)

then R will not be potentially optimal until all hyperrectangles in the “neighborhood”
of R, i.e., all hyperrectangles whose centers are on the stencil c ± 3−lei for i = 1, . . . , N
are the same size as R.

Proof For hypercube R to be potentially optimal there must exist K̃ such that (2)
and (3) hold.

From (2), it is clear that

K̃ ≤ f (cT) − f (c)
α(T) − α(R)

for all T ∈ S, α(T) > α(R). We define K̃ to be as large as possible; that is, we let

K̃ = min
T∈S

f (cT) − f (c)
α(T) − α(R)

= f (cT̃) − f (c)

α(T̃) − α(R)
(6)

and show that (3) cannot be satisfied.
Since α(R) = 3−l√n/2, inequality (5) is equivalent to

2K√
n + 8 − √

n
<

ε|f (c)|
3−l

2
√

n
. (7)

604 J Glob Optim (2006) 36:597–608

The smallest T ∈ S with α(T) > α(R) will have one side of length 3−l+1 and n − 1
sides of length 3−l, such a hyperrectangle will have size

α(T) =
√

(n − 1)

(
3−l

2

)2

+
(

3−l+1

2

)2

= 3−l

2

√
n + 8.

Hence,

α(T̃) − α(R) ≥ 3−l

2

(√
n + 8 − √

n
)

. (8)

The Lipschitz continuity of f implies that

f (cT̃) − f (c) = f (c ± 3−leĩ) − f (c) ≤ K3−l. (9)

Therefore,

K̃ = f (cT̃) − f (c)

α(T̃) − α(R)
≤ K3−l

3−l

2

(√
n + 8 − √

n
) = 2K√

n + 8 − √
n

. (10)

Combining (10) and (7), we see that

K̃ <
ε|f (c)|
3−l

2
√

n
. (11)

From f (c) = fmin, it follows that

f (c) − K̃α(R) > fmin − ε|fmin|. (12)

Recall that in (6) we chose K̃ as large as possible. Therefore, hypercube R cannot be
potentially optimal.

If ε > 0 and the global minimum of f is nonzero, then inequality (5) will hold
when the search has progressed to the point of centering the global minimizer in a
sufficiently small hyperrectangle. With poor additive scaling, |f (c)| in Eq. (5) will be
higher, thereby increasing the right side of the inequality (5). Hence the condition
for the theorem will be met earlier in the search, which will prevent DIRECT from
dividing the rectangle with the best point, and thereby prevent clustering near optimal
solutions. We observed this effect in Fig. 4.

When |f (c)|
K ≈ 1, the right-hand-side of (5) is much smaller, and the poor behavior

occurs in later iterations, as seen in Fig. 5 for problem (4). For the problem described
in (4), the smallest hyperrectangle begins being ignored when it reaches a size of
1.7e-5, which is precisely what (5) predicts. Inequality (5) illustrates why DIRECT has
a slow rate of asymptotic convergence when ε �= 0.

Theorem 3.2 describes the worst case of additive scaling. If (13) holds, then R will
not be potentially optimal if there are any larger hyperrectangles at all. One can
clearly add a constant to f to make (13) hold, so the potential for this worst case is
always present.

Theorem 3.2 Let f have Lipschitz constant K. Let

f ∗ = min
x∈�

f (x).

J Glob Optim (2006) 36:597–608 605

Let S, R, and c be as in Theorem 3.1. If

f ∗ >
K

√
n

ε(
√

1 + 8/n − 1)
(13)

then R is not potentially optimal if any T ∈ S is larger than R.

Proof We assume that (13) holds. Hence f > 0 and |f | = f . Assume that there is at
least one T ∈ S with α(T) > α(R). Let T̃ ∈ S be such that

f (cT̃) = min
T∈S,α(T)>α(R)

f (cT).

R will not be potentially optimal if

f (c) − α(R)

α(T̃)
(f (cT̃ − (1 − ε)f (c)) > (1 − ε)f (c), (14)

which is equivalent to

f (c) >
f (cT̃ − f (c))

ε(α(T̃)/α(R) − 1)
. (15)

Clearly f (c) ≥ f ∗. We can estimate the right side of (15) from above by noting that
the diameter of � is

√
n and so

f (cT̃) − f (c) ≤ K
√

n.

As in the proof of Theorem 3.1,

α(T̃)/α(R) ≥
√

n + 8√
n

= √
1 + 8/n.

Hence (13) implies (15), which completes the proof.
In the next section, we propose a modified version of DIRECT, and present numer-

ical results for several different test problems.

4 Modified DIRECT

We seek a modification to DIRECT that is easy to implement, improves performance
on poorly scaled (additively) problems, and adds no new parameters.

Similar to [8], our modification is a simple update to the definition of potentially
optimal hyperrectangles. After each iteration, we scale the function values by sub-
tracting the median of the collected function values. The result is an update to (3):

f (cR) − K̂α(R) ≤ fmin − ε|fmin − fmedian|. (16)

In [8], (3) was updated to introduce a lower bound for the influence of the balance
parameter. We have modified DIRECT so that the balance parameter’s influence is
reduced. We experimented with several different scaling values (e.g. the average of
collected function values, the maximum, and the first function value), but encountered
performance problems with each. For example, additively scaling all function values
by fmax lead to poor performance on problems whose function values spanned multiple
orders of magnitude. Similar problems occured when we tried other scaling values.

606 J Glob Optim (2006) 36:597–608

Table 2 Comparison of DIRECT and modified DIRECT: unperturbed problems

Problem S5 S7 S10 H3 H6 BR GP C6 SH

DIRECT: ε = 10−4 155 145 145 199 571 195 191 285 2,967
DIRECT: ε = 0 179 145 145 199 571 195 191 285 Fail
Modified DIRECT - median 155 145 145 199 571 259 191 285 3,663

Table 3 Comparison of DIRECT and modified DIRECT on test problems additively perturbed by
100,000

Problem S5 S7 S10 H3 H6 BR GP C6 SH

DIRECT: ε = 10−4 Fail Fail Fail Fail Fail Fail 16,135 135,969 57,093
DIRECT: ε = 0 187 145 145 199 Fail 195 16,135 Fail Fail
Modified DIRECT - median 155 145 145 199 571 259 191 285 3,663

Our test results indicate that (16) does not impact performance on well-behaved prob-
lems, and can improve convergence speed on problems with poor additive scaling.

We present a small set of test results that illustrate the robustness of our modifica-
tion.

Our first test is to compare DIRECT and the modification on the nine original on
the nine original test problems from [16]. The nine problems, S5, S7, S10, H3, H6,
BR, GP, C6, and SH, are low-dimensional (n ∈ [2, 6]), have multiple local and global
minima, and cannot be reliably solved by gradient-based methods. More information
about these problems is found in [6, 9, 16, 21].

We perform the same test as done in [16]; that is, each algorithm is terminated
when

fmin − f ∗

|f ∗| ≤ 10−4,

where fmin is function value at the best point found by the algorithm. Our results are
summarized in Table 2. We tabulate the number of function evaluations needed for
the two algorithms to terminate, and included results for the simple modification of
updating ε = 0. We report the test as a failure if it took more than 200, 000 function
evaluations.

On seven of nine original test problems, our modification does not affect conver-
gence. On the Shubert test problem our modification weakened the good effects of
the parameter ε, but did much better than simply setting ε = 0. The benefits of the
modified approach are seen clearly if the problems are poorly additively scaled.

In the next test, we additively perturb the problems in the test set by 100,000, and
again compare the performance of our modification to the original DIRECT. We use
the same termination criteria used in Table 2; that is, we terminate when

fmin − f ∗

|f ∗ − 100, 000| ≤ 10−4. (17)

Our results are shown in Table 3. Once again, a failure occurs when the problems
takes more than 200,000 functions to satisfy (17).

The results indicate that our modification can improve the performance of DIRECT
on additively perturbed problems. Points sampled by our modification cluster near

J Glob Optim (2006) 36:597–608 607

101 102 103 104 105 106
102

103

104

105

106

Additive Perturbation

fc
n

ev
al

s
DIRECT
Mod. DIRECT

Fig. 6 Function evaluations required for convergence on the Goldstein-Price problem vs additive
perturbation

optima independently of the objective function scale. Once again, our modification
weakens DIRECT on the Shubert problem, but is better than simply setting ε = 0.

Lastly, we present the impact of additive scaling on one test problem, the Goldstein-
Price problem. In Fig. 6, we compare DIRECT and our modified implementation as
the additive perturbation is increased. We use (17) to terminate both algorithms. Our
modification is not affected by the perturbations, while convergence of the original
implementation of DIRECT requires more function evaluations as the perturbation
grows.

5 Conclusion

The DIRECT algorithm uses a parameter ε to guard against excessive local bias in the
search. We show the wat this parameter is used makes DIRECT sensitive to additive
scaling and, as a result DIRECT may have slow asymptotic convergence on poorly
scaled problems. We quantify the sensitivity of DIRECT in Theorem 3.1.

We propose a modification to DIRECT [16] that addresses this problem. Test results
show that our modification can remove sensitivity to additive scaling and improve
clustering of sample points near optimal solutions.

Acknowledgements The authors would like to thank Evin Kramer for her insight into DIRECT, and
Joerg Gablonsky for his suggestions in developing the software used in this paper. The authors are
also grateful to an anonymous referee for suggesting that we could simplify the original version of our
modified algorithm, and for suggesting Theorem 3.2. This research was supported in part by National
Science Foundation grants DMS-0070641, DMS-0112542, and DMS-0209695. Version of March 17,
2006.

608 J Glob Optim (2006) 36:597–608

References

1. Audet, C., Dennis, J.E.: Mesh adaptive direct search algorithms for constrained optimization. Tech-
nical Report TR04-02, Department of Computational and Applied Mathematics, Rice Univeristy
(2004)

2. Audet, C., Dennis, Jr., J.E.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903
(2003)

3. Bartholomew-Biggs, M., Parkhurst, S., Wilson, S.: Using DIRECT to solve an aircraft routing
problem. Comput. Optim. Appl. 21, 311–323 (2002)

4. Carter, R., Gablonsky, J., Patrick, A., Kelley, C., Eslinger, O.J.: Algorithms for nosiy problems in
gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001)

5. Cramer, E., Carter, M.: Global optimization of a multi-element airfoil. In: Collection of Technical
Papers, Pt. 2, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference and Exhibit, and AIAA/ASME/AHS Adaptive Structures Forum. pp. 5–39 Kissim-
mee, FL (1997)

6. Dixon, L., Szego, G.: Towards global optimisation 2, 1 edn. North-Holland, New York, NY, (1978)
7. Finkel, D., Kelley, C.: Nonsmooth convergence analysis of DIRECT. Technical Report CRSC-

TR04-28, Center for Research in Scientific Computation, North Carolina State University (2004)
8. Floudas, C., Pardalos, P. (eds.): Encyclopedia of Optimization, Chapter The DIRECT Global

Optimization Algorithm, pp. 431–440. The Encyclopedia of Optimization. Kluwer Academic
Dordrecht (2001)

9. Gablonsky, J.: Modifications of the direct algorithm. Ph.D. thesis, North Carolina State University
(2001a)

10. Gablonsky, J., Kelley, C.: A locally-biased form of the DIRECT algorithm. J. Global Optim. 21,
27–37 (2001)

11. Gablonsky, J.M.: DIRECT version 2.0 user guide. Technical Report CRSC-TR01-08, Center for
Research in Scientific Computation, North Carolina State University (2001b)

12. Gilmore, P., Kelley, C.T.: An implicit filtering algorithm for optimization of functions with many
local minima. SIAM J. Optim. 5, 269–285 (1995)

13. He, J., Watson, L., Ramakrishnan, N., Shaffer, C., Verstak, A., Jian, J., Bae, K., Bae, K.,
Tranter, W.: Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23(1),
5–25 (2002)

14. Hooke, R., Jeeves, T.: Direct search solution of numerical and statistical problems. J. Assoc.
Comput. Mach. 8, 212–229 (1961)

15. Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous parallel pattern search for nonlinear opti-
mization. SIAM J. Sci. Comput. 23, 134–156 (2001)

16. Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian optimization without the Lipschitz constant.
J. Optim. Theor. Appl. 79(1), 157–181 (1993)

17. Kolda, T., Lewis, R., Torczon, V.: Optimization by direct search: new perspective on some classical
and modern methods. SIAM Rev. 45(3), 385–482 (2003)

18. Ljunberg, K., Holmgren, S.: Simultaneous search for multiple QTL using the global optimization
algorithm DIRECT. Bioinformatics 20(12), 1887–1895 (2004)

19. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
20. Sasena, M., Papalambros, P., Goovaerts, P.: Global optimization of problems with disconnected

feasible Regions via Surrogate Modeling. In: 9th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization. Atlanta, GA (2002)

21. Yao, Y.: Dynamic Tunneling algorithm for global optimization. IEEE Trans. Syst. Man Cybern.
19, 1222–1230 (1989)

